PyTorch Implementation of Softmax Multi-Classifier
We hope the outputs is competitive! Actually we hope the neural network outputs a distribution.
such that
P(y=i)\ge 0
\sum_{i=0}^{9}P(Y=i)=1
Softmax Layer
P(y = i)=\frac{e^{z_i}}{\sum_{j=0}^{K-1}e^{z_j}}, i\in{0,\cdots,K-1}
Loss function – Cross Entropy
# Cross Entropy in numpy
import numpy as np
y = np.array([1, 0, 0])
z = np.array([0.2, 0.1, -0.1])
y_pred = np.exp(z) / np.exp(z).sum()
loss = (- y * np.log(y_pred)).sum()
print(loss)
# Cross Entropy in PyTorch
import torch
y = torch.LongTensor([0])
z = torch.Tensor([[0.2, 0.1, -0.1]])
criterion = torch.nn.CrossEntropyLoss()
loss = criterion(z, y)
print(loss)
#Mini-Batch: batch_size = 3
import torch
criterion = torch.nn.CrossEntropyLoss()
Y = torch.LongTensor([2, 0, 1])
Y_pred1 = torch.Tensor([[0.1, 0.2, 0.9],
[1.1, 0.1, 0.2],
[0.2, 2.1, 0.1]])
Y_pred2 = torch.Tensor([[0.8, 0.2, 0.3],
[0.2, 0.3, 0.5],
[0.2, 0.2, 0.5]])
l1 = criterion(Y_pred1, Y)
l2 = criterion(Y_pred2, Y)
print("Batch Loss1 = ", l1.data, "\nBatch Loss2 = ", l2.data)
MNIST dataset
step 0: Import Package
import torch
from torchvision import transforms
from torchvision import datasets
from torch.utils.data import DataLoader
# For constructing DataLoader
import torch.nn.functional as F
# For using function relu()
import torch.optim as optim
# For constructing Optimizer
step 1: Prepare Dataset
batch_size = 64
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
# The parameters are mean and std respectively.makes it to a 0-1 distribution
])
# Transform is to convert the PIL Image to Tensor
PIL\ Image:Z^{28\times28},pixel\in{0,\cdots,255}\Rightarrow PyTorch Tensor :R^{1\times28\times28},pixel\in[0,1]
pixel_{norm}=\frac{Pixel_{origin}-mean}{std}
train_dataset = datasets.MNIST(root='..\dataset\mnist',
train=True,
download=True,
transform=transform)
train_loader = DataLoader(train_dataset,
shuffle=True,
batch_size=batch_size)
test_dataset = datasets.MNIST(root='..\dataset\mnist',
train=False,
download=True,
transform=transform)
test_loader = DataLoader(test_dataset,
shuffle=False,
batch_size=batch_size)
class Net(torch.nn.Module):
def __init__(self):
super(Net, self).__init__()
self.l1 = torch.nn.Linear(784, 512)
self.l2 = torch.nn.Linear(512, 256)
self.l3 = torch.nn.Linear(256, 128)
self.l4 = torch.nn.Linear(128, 64)
self.l5 = torch.nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 784)
x = F.relu(self.l1(x))
x = F.relu(self.l2(x))
x = F.relu(self.l3(x))
x = F.relu(self.l4(x))
return self.l5(x)
# DO NOT activate at the last step, because Torch.nn.CrossEntropyLoss includes relu function
step 3: Construct Loss and Optimizer
model = Net()
criterion = torch.nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.5)
step 4: Train and Test
def train(epoch):
running_loss = 0.0
for batch_idx, data in enumerate(train_loader, 0):
inputs, target = data
optimizer.zero_grad()
# forward + backward + update
outputs = model(inputs)
loss = criterion(outputs, target)
loss.backward()
optimizer.step()
running_loss += loss.item()
if batch_idx % 300 == 299:
print('%d %d loss: %.3f' % (epoch + 1, batch_idx + 1, running_loss / 300))
running_loss = 0.0
def test():
correct = 0
total = 0
with torch.no_grad(): # the code below will not calculate gradient
for data in test_loader:
images, labels = data
outputs = model(images)
_, predicted = torch.max(outputs.data, dim=1)
# dim=0/1 refer to line/column dimension
# '_' refers to maximum and 'predicted' refers to index of the maximum number
total += labels.size(0)
# label.size -> n*1
correct += (predicted == labels).sum().item()
print('Accuracy on test set: %d %%' % (100 * correct / total))
if __name__ == '__main__':
for epoch in range(10):
train(epoch)
test()