PyTorch Implementation of Convolutional Neural Network

PyTorch Implementation of Convolutional Neural Network

This passage is to solve MNIST problem using CNN, Residual Net and Inception Module.

1. Convolutional Layer

import torch
in_channels, out_channels = 5, 10
width, height = 100, 100  # imgae size
kernel_size = 3
batch_size = 1
input = torch.randn(batch_size, in_channels, width, height)
conv_layer = torch.nn.Conv2d(in_channels, out_channels, kernel_size=kernel_size)
output = conv_layer(input)
print(input.shape)
print(output.shape)
print(conv_layer.weight.shape)

2. Convolutional Layer – padding = 1

import torch
input = [3, 4, 5, 6, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)
# view(Batch_number, input_Channel, width, height)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, padding=1, bias=False)
# torch.nn.Conv2d(input_channel, output_channel, kernel_size(3x3), padding, bias)
kernel = torch.Tensor([1, 2, 3, 4, 5, 6, 7, 8, 9]).view(1, 1, 3, 3)
# view is like reshape
conv_layer.weight.data = kernel.data
# kernel is a tensor. use kernel.data
# edit conv_layer.weight to change the kernel
output = conv_layer(input)
print(output)

3. Convolutional Layer – stride = 2

import torch
input = [3, 4, 5, 6, 7,
         2, 4, 6, 8, 2,
         1, 6, 7, 8, 4,
         9, 7, 4, 6, 2,
         3, 7, 5, 4, 1]
input = torch.Tensor(input).view(1, 1, 5, 5)
conv_layer = torch.nn.Conv2d(1, 1, kernel_size=3, stride=2, bias=False)
output = conv_layer(input)
print(output)

4. Max pooling layer

import torch
input = [3, 4, 6, 5,
         2, 4, 6, 8,
         1, 6, 7, 8,
         9, 7, 4, 6,
         ]
input = torch.Tensor(input).view(1, 1, 4, 4)
maxpooling_layer = torch.nn.MaxPool2d(kernel_size=2)
output = maxpooling_layer(input)
print(output)

class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size = 5)
        self.conv2 = torch.nn.Conv2d(10 ,20, kernel_size = 5)
        self.pooling = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(320, 10)
    def forward(self, x):
        # Flatten data from (n, 1, 28, 28) to (n, 784)
        batch_size = x.size(0)
        # x.size == (n, 1, 28, 28) ==> x.size(0) == n
        x = F.relu(self.pooling(self.conv1(x)))
        x = F.relu(self.pooling(self.conv2(x)))
        x = x.view(batch_size, -1)# flatten
        x = self.fc(x)
        return x
model = Net()
#if wanna use gpu-----------------------
device = torch.device("cuda:0"if torch.cuda.is_available() else "cpu")
model.to(device)
#---------------------------------------
def train(epoch):
    running_loss = 0.0
    for batch_idx, data in enumerate(train_loader, 0):
        inputs, target = data
        inputs, target = inputs.to(device), target.to(device)
        # send the inputs and targets at every step to the GPU
        optimizer.zero_grad()
        # forward + backward + update
        outputs = model(inputs)
        loss = criterion(outputs, target)
        loss.backward()
        optimizer.step()
        running_loss +=loss.item()
        if batch_idx % 300 == 299:
            print('[%d %5d] loss:%.3f' % (epoch+1, batch_idx +1, running_loss / 2000))
            running_loss = 0.0
def test():
    correct = 0
    total = 0
    with torch.no_grad():
        for data in test_loader:
            inputs, target = data
            inputs, target = inputs.to(device), target.to(device)
            outputs = model(inputs)
            _, predicted = torch.max(outputs.data, dim = 1)
            total += target.size(0)
            correct += (predicted == target).sum().item()
        print('Accuracy on test set: %d %% [%d/%d]' % (100 * correct / total, correct, total))

Inception Module:

we can use class to decrease programming tasks.
Inception:

class InceptionA(torch.nn.Module):
    def __init__(self, in_channels):
        super(InceptionA, self).__init__()
        self.branch1x1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch5x5_2 = torch.nn.Conv2d(16, 24, kernel_size=5, padding=2)
        self.branch3x3_1 = torch.nn.Conv2d(in_channels, 16, kernel_size=1)
        self.branch3x3_2 = torch.nn.Conv2d(16, 24, kernel_size=3, padding=1)
        self.branch3x3_3 = torch.nn.Conv2d(24, 24, kernel_size=3, padding=1)
        self.branch_pool = torch.nn.Conv2d(in_channels, 24, kernel_size=1)
    def forward(self, x):
        branch1x1 = self.branch1x1(x)
        branch5x5 = self.branch5x5_1(x)
        branch5x5 = self.branch5x5_2(branch5x5)
        branch3x3 = self.branch3x3_1(x)
        branch3x3 = self.branch3x3_2(branch3x3)
        branch3x3 = self.branch3x3_3(branch3x3)
        branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1)
        branch_pool = self.branch_pool(branch_pool)
        outputs = [branch1x1, branch5x5, branch3x3, branch_pool]
        return torch.cat(outputs, dim=1)
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 10, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(88, 20, kernel_size=5)
        # 88 = 24 + 24 + 24 + 16
        self.incep1 = InceptionA(in_channels=10)
        self.incep2 = InceptionA(in_channels=20)
        self.mp = torch.nn.MaxPool2d(2)
        self.fc = torch.nn.Linear(1408, 10)
    def forward(self, x):
        in_size = x.size(0)
        x = F.relu(self.mp(self.conv1(x)))
        x = self.incep1(x)
        x = F.relu(self.mp(self.conv2(x)))
        x = self.incep2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

Residual net:

class ResidualBlock(torch.nn.Module):
    def __init__(self, channels):
        super(ResidualBlock, self).__init__()
        self.channels = channels
        self.conv1 = torch.nn.Conv2d(channels, channels,
                                     kernel_size=3, padding=1)
        self.conv2 = torch.nn.Conv2d(channels, channels,
                               kernel_size=3, padding=1)
    def forward(self, x):
        y = F.relu(self.conv1(x))
        y = self.conv2(y)
        return F.relu(x + y)
class Net(torch.nn.Module):
    def __init__(self):
        super(Net, self).__init__()
        self.conv1 = torch.nn.Conv2d(1, 16, kernel_size=5)
        self.conv2 = torch.nn.Conv2d(16, 32, kernel_size=5)
        self.mp = torch.nn.MaxPool2d(2)
        self.rblock1 = ResidualBlock(16)
        self.rblock2 = ResidualBlock(32)
        self.fc = torch.nn.Linear(512, 10)
    def forward(self, x):
        in_size = x.size(0)
        x = self.mp(F.relu(self.conv1(x)))
        x = self.rblock1(x)
        x = self.mp(F.relu(self.conv2(x)))
        x = self.rblock2(x)
        x = x.view(in_size, -1)
        x = self.fc(x)
        return x

留下回复